Handbook on Statistical Disclosure Control for Outputs

Part 2: Organisation and Managing Requests

Carlotta Greci (The Health Foundation) - Emily Griffiths (University of Manchester) - James Scott (UK Data Archive, University of Essex) - Richard Welpton (The Health Foundation) - Arne Wolters (The Health Foundation) - Christine Woods (UK Data Archive, University of Essex)

BETA VERSION 1.0

MARCH 2019
Preface

This Handbook is designed both for staff working in services that provide access to confidential data, and the users of those services; and staff working in organisations that provide a secure data environment for internal use for those staff, who are likely to be assessing the results for statistical disclosure risk themselves.

Section B is primarily aimed at the former: for staff working in a service that provides secure access to confidential data, and for who the users are likely to be external (although a well-funded ‘in-house’ solution might well work along the same principles: for example, the ONS Secure Research Service provides access to internal ONS staff in the same way that it does to external analysts).

An important reason exists for making this distinction. The way statistical disclosure control is organised can have a bearing on the safe release of results. If managed inefficiently, there is a higher risk that something will be missed, or an error made, resulting in the publication of a statistic that could reveal the identity of a data subject and/or some confidential information.

However, the way that organisations manage statistical results requests, and the process of statistical disclosure control, will vary on according to its own circumstances. For example, an ‘in-house’ solution may only have a need for statistical disclosure control assessments to be undertaken once or twice a week, depending on the number of projects being worked on. This contrasts to a large service, such as the UK Data Service, which receives on average 5 to 10 statistical results requests from users every working day. Whatever the circumstances, the advice and guidance which follows may be applicable to both situations. They reflect the shared best practice and wisdom of staff working in both environments over a number of years.
Contents

Implementing SDC as an organisation ... 3
Managing analysts ... 10
What is a good statistical result? ... 13
Managing expectations .. 19
Implementing SDC as an organisation
In this chapter, you will learn:

1. How to encourage analysts to produce results which can be easily assessed for statistical disclosure
2. Why it is important for two people to check results
3. Why it is important for staff undertaking checks are independent from the analysis being undertaken
4. How to manage workloads and pressure
5. The importance of keeping records and auditing
6. The wider context of undertaking statistical disclosure control

Statistical Disclosure Control represents a valuable tool to any organisation that routinely produces statistical results from sensitive data. Having a robust approach to statistical result checking provides a framework to ensure that information released in the public domain does not breach data subjects’ confidentiality and at the same time satisfies the risk appetite of data providers.

The design of any SDC process should reflect the organisation’s aims and analytical purposes, and has to be consistent with the overall approach to data security. There is no prescribed way to implement this process as this is largely bespoke to the type of data access provided. This section provides an overview of some specific aspects to take into consideration when setting up or running a SDC service, the challenges associated and some practical examples based on best practices adopted by a number of data centres in the UK.

Incentivising Good Results

A successful SDC process relies in large part on the quality of the results generated by analysts. Clear and easy-to-understand results enable checkers to provide better assessments and reduce the time and effort of statistical results checking.

An organisation should encourage ways to incentivise analysts to produce good results. A basic training on statistical disclosure control covering the most common types of results
can be delivered to all analysts accessing sensitive data. As a further measure, analysts can be asked to apply these principles to every result they produce. We recommend that guidance on what information is needed by Checkers for clearing each type of statistical results, is provided to analysts in advance.

Four Eyes Principle

It is generally best practice to have statistical results checked by two different checkers. These can be specific members of an organisation or internal analysts but, in general, each statistical result request should be scrutinised by at least one person not involved with the original statistical result. Each check should be carried out independently of the other checker, and the decision to release a set of results should be taken jointly to ensure consistency.

Large organisations or data services may experience requests for a variety of results, some of which may prove challenging for a checker to assess. Having a second pair of eyes to review the statistical results may help with building confidence towards the decision whether to release or not, and mitigate the risk of mistakes by requesting a second opinion.

For other organisations, for example, that provide ‘in-house’ secure data environments for their staff, this may not be necessary (if for example, only one or two sets of statistical results are released on a rare basis). This is because more time is available to the staff in assessing the statistical results for SDC. In a busy service such as UK Data Service, the 4-eyes principle is more appropriate.

Independence Of Checkers

Any consistent SDC process relies on the ability of the person in charge of checking statistical results to provide an impartial assessment. As an organisation, it is important to ensure that there is an adequate level of segregation between the analyst who produces the statistical results and the person responsible for checking it.

Small organisations and in-house services often tend to rely on their own analysts to check statistical results. In these circumstances, it is important that this role is kept separate from the work produced as an analyst. A basic rule is not to allow checkers to release their own statistical results but to require a second assessment from another analyst, possibly from another project. In small teams, this may prove challenging as all analysts may have a potential conflict of interest if they are working on the same project. In this case, a robust auditing process and random spot checks can provide a good solution to monitor the quality of the statistical results released.
Managing Workload And Pressure
As SDC is the final safeguard before releasing potentially sensitive information in the public domain, an organisation should allocate enough resources to ensure that checkers are in a good position to make their judgment. Stress, pressure and high workloads may quickly lead to the release of disclosive results. As an organisation, it is important to provide an environment where checkers feel confident to reject bad results and do not feel pressured by analysts to make exceptions.

Setting up a Service Level Agreement is a way to release some pressure from the system and allow checkers enough time to assess each request adequately. Analysts need to be aware that requests should be submitted in a timely way and that their work schedule should account for the time necessary for a request to be reviewed. In some cases, scheduling a specific time slot for statistical results checking can encourage analysts to concentrate all their statistical results in one request, avoiding fragmentation and facilitating the work of the checker.

A system of rotation between checkers can also improve the performance of the process, and can avoid favouritism or unbalanced workload towards more friendly checkers. This would also encourage checkers to work on a different variety of statistical results and ultimately can increase consistency in applying SDC.

Ensuring that output checkers work on other tasks during the working week will help avoid ‘output fatigue’ and burnout, which could lead to a reduction in service quality.

Ideally, staff should check outputs with different members of the team; if a pair of output checkers are both making a consistent mistake together, this may go unnoticed.

Some services may consider that not every set of statistical results need to be checked. For example, regression results contain a very small risk of disclosure; by contrast, more risk is often inherent in tables of frequencies and descriptive statistics. It could be that checkers only undertake SDC of these latter statistics, and automatically release e.g. regression results without question.

It may be an understandable position to take: however, SDAP recommends that every set of statistics is checked, even if just a cursory glance is applied for results such as regressions. A safeguarded approach would be to encourage prolific-requesting analysts whether they require so many statistical results to be released, especially if they know that they are unlikely to use or refer to the majority of the results requested for release.

Record Keeping And Accountability
As a tool to mitigate risk, it is important to keep a record of all statistical result requests in order to have the evidence to assess whether the process in place meets the organisation’s
needs. In particular, there are a number of reasons why keeping a comprehensive record of the SDC process may result bebe useful for an organisation.

First, this helps monitoring the volume and type of the statistical results requests while generating information on the quality of the statistical results and the decisions of checkers, with scope for continuous improvement of the process. AlsoBesides, it is a tool for identifying who is accountable for each request and to ensure that the SDC process is followed correctly and with no confusion.

Second, a historical log of the SDC activity offers a useful knowledge base for all checkers, especially when facing results or data sources they are less familiar with. It also provides reassurance on past decisions of release in the case of audits from data providers.

Finally, it is an easy way to generate logs on risk management for external or internal audits (e.g. ISO27001, IG Toolkit) and for enabling spot checks. At the same time, it provides a consistent approach with the conditions required by the forthcoming data protection regulations (e.g. privacy by design).

There is no general rule on how to keep a record of the SDC process. Audit logs can be tailored to fit an organisation’s needs, the volume of the service, the resources available and any security or information governance requirements (e.g. ISO27001, IG Toolkit). It is important that the process does not become too burdensome to follow, as that may lead to misreporting from both analysts and checkers.

In general, it is good practice to keep a record:

- of all statistical results requested,
- the checker’s decision (i.e. statistical results released, rejected or withdrawn),
- who requested the statistical results,
- who checked it,
- any issues or amendments applied,
- and the reasoning behind each decision,.
- date when the request was made, approved, and statistical results released.

Additionally, it could be useful to keep a copy of the statistical results released in their original form. This is to allow spot checks and minimise secondary disclosure that could arise from multiple copies of the same statistical results being released.
Audit
A key role of the risk management of statistical results checking relies on a continuous audit of the SDC process.

It is advisable to have regular internal audits of the SDC activity, in order to monitor the quality of the statistical results released and to identify any issues that may lead to a security problem. For instance, the rejection rates of statistical results can represent a good indicator of a problem. An unusually high rate may be related to poor quality of statistical results from a particular analyst or to the need of further training for some checkers, or it may ultimately indicate that SDC is applied incorrectly. On the other side, a very low or null rejection rate may signal a failure to comply with the SDC procedures, leading to the risk of releasing potentially disclosive results from the system.

An internal process of revision allows an organisation to identify scope for continuous improvement and enables a constructive debate on the system adopted. On a similar line, external audits can provide a valuable opportunity to get a fresh opinion on the SDC process. It is important to design audits with the aim to improve the SDC process and to encourage checkers and analysts to report issues and near misses. It might be beneficial to run regular meetings for checkers to discuss particularly challenging statistical results, identify training needs and share expertise on the way they apply SDC. Spot checks on the statistical results released can be used as an additional tool to monitor the performance of the process, with statistical results deemed too disclosive being withdrawn from the public domain.

The concept of statistical disclosure is dependent on the context in which a statistical result is released, the interpretation of the checker and the risk appetite of that moment. These factors may change over time, especially when more statistical results of the same kind are released leading to an increase in the risk of secondary disclosure. Random spot checks and audits provide a way to review this risk and ensure that the approach is consistent over time and in line with the organisation’s goals.

Understanding The Wider Landscape
Statistical disclosure control is a widely applied tool, which addresses an increasingly complex legislative framework on data confidentiality and information governance. In this fast changing landscape, an organisation can struggle to identify the right set of skills for this type of role. At the same time, checkers can feel challenged by new statistical methodologies and novel data sources, which can potentially bear new and unknown forms of disclosure.

In this context, it is important to identify training opportunities and keep checkers abreast of best practices, changes in legislation and new SDC techniques. In addition, an organisation should encourage checkers to share and discuss informally particularly challenging statistical results.
and the issues faced. Ultimately, statistical disclosure control is a tool that reflects the approach of an organisation to risk management. For this reason, it is important that checkers feel confident when reviewing statistical results and have a route to share any issues or seek expert advice.
Managing analysts
IN THIS CHAPTER, YOU WILL LEARN:

1. The importance of taking a consistent approach to SDC

2. How organisations providing a similar service, or providing access to similar data, could work together to take a consistent approach

Receiving a large number of frequent requests for releases of statistical results from analysts can introduce challenges. For example, should requests be prioritised? How can consistency in how SDC is applied be achieved? Importantly, how can relationships with analysts be nurtured to achieve the most efficient outcome. This section considers a number of issues that affect analysts as well as staff.

Consistent Approach To SDC Across Organisation/checkers

Where there are multiple staff conducting SDC in an organisation, it is important that a consistent approach is applied by each checker. This includes:

- assessing statistics for statistical disclosure control (SDC) in the same way; and
- ensuring that the type of statistical results submitted by the analyst meets the organisation’s requirements.

Organisations will differ in their approach to assessing statistics for SDC and in relation to the type of statistical results they require analysts to submit (see ‘What are good results?’ below for recommendations). However, it is key that checkers apply the service’s approach consistently. If this is not done then analysts may favour particular checkers (e.g. due to them being more lenient), increasing the risk of unsafe statistics being published.
Checkers should liaise with analysts in a consistent manner and ensure that messages are communicated consistently. For example, where additional information is requested from an analyst in order for the checker to make an assessment about whether a statistic is safe or not, the checker should clearly explain the reason/s for this. Likewise, if a statistical result is deemed unsafe and revisions are required, the checker should ensure that the analyst understands the reason/s for this and is able to make the required changes to produce a safe set of statistical results.

Finally, it is important that the approach adopted by the organisation to protect the confidentiality of data subjects is consistent over time.

We would recommend that the above are monitored through regular audits, and where issues are identified, that changes are implemented (e.g. through staff training).

There could be advantages to be realised where services offer access to similar data types, or even provide access to the same analysts, provide a consistent approach to SDC. It would be more efficient because analysts wouldn’t have to learn ‘two or more’ approaches and remember to apply depending on which service they were accessing data. Convergence could be an aim of different services.
What is a good set of statistical results?
In this chapter, you will learn:

1. What constitutes a ‘good’ statistical output
2. What information to ask an analyst to provide when they submit an output

Organisations will have different requirements relating to the type of statistical results they will check. Here are some suggestions about what constitutes a good set of statistical results:

- Well explained
- Description of the project
- The dataset/s used
- Sample selection criteria
- Method
- Description of the variables
- Description of the results
- Neatly presented
- Tables and figures numbered
- Variables clearly labelled
- Easy to read etc.

Includes The Required Information

This is the information that needs to be provided by the analyst so that the checker/s can make an assessment about whether the statistics are safe. This includes information such as number of observations, as well as clear descriptions of the
variables. See ‘Minimum requirement (e.g. information that needs to be provided by analyst)’ under each SDC technique (section X.X).

Minimum Amount Needed To Be Released
We recommend requesting that analysts think about and select the statistics they need to present their findings, rather than presenting all of the statistics they have run during their analysis.

Not A Log File
We suggest that log files or statistical results pasted from a log file are not released. This is because these types of statistical results do not meet the above requirements (e.g. well explained, neatly presented etc.) and are also likely to include statistics not required for publication.

Reason For Release
Analysts should set out their reason for release (e.g. journal publication, presentation).

Organisations may wish to use a request form to record analysts’ requests and capture some of the above information where appropriate. This could be available online or within the Safe Setting.

Why Are Good Statistical Results Important?
Where good statistical results are not produced there is likely to be a higher risk of disclosure.

For example, ensuring that statistical results are well explained and neatly presented means that checkers understand the statistics and can make an assessment about whether they are safe quickly and easily. Where a bad set of statistical results is submitted (e.g. with poor description and presentation), checkers will find it difficult to understand the results and although additional information can be obtained (e.g. via requests for further information from the analyst), the statistical results will be harder to check and the risk of disclosure therefore likely to be higher.

Requesting that analysts submit the minimum amount needed for publication helps to reduce the risk of secondary disclosure. Where statistical results with a large number of statistics are submitted (e.g. numerous descriptive statistics), the risk of secondary disclosure (e.g. disclosure through differencing) will be higher.

To ensure good statistical results are produced by analysts, we recommend that organisations have a system in place to incentivise good behaviour and avoid bad (i.e. statistically risky) statistical results being produced and published. This could include prioritising the release of ‘good’ results over ‘bad’ results, and explaining to analysts of both sets of results
why they were prioritised. See Ritchie & Welpton (2013) for similar approaches to this.

The Good And The Bad Of Output Checking

In August 2018, SDAP organised a special workshop on SDC, bringing together a number of SDC practitioners. Each participant wrote down an example of a ‘good’ output request, and also, an example of a ‘bad’ output request.

The results are shown overleaf. Interesting, in general, good outputs were considered to be:

• easy to understand (clear labels on graphs etc.)
• well explained (methodology and interpretation of results)

By contrast, bad outputs:

• contained little or no explanation about what the results showed
• were often little more than log files created by analysts as part of their daily work
The good......

- Box plot requested with explanation about why outliers were safe to release
- Asked for advice before making request
- Analysis plan accompanied the results, so it was easy for me to understand the results
- Only requested what was required
- Results included separate calculations to prove that ‘dominance rule’ had been met
- Clear explanations of the results
- Data citation provided
- Easy to understand variable names
- Frequency counts provided for graphs
- Clear explanation of what the results meant
- Box plot requested with explanation about why outliers were safe to release
- Provided draft journal article so easy to understand context of results
- Clear explanations of the results
- Data citation provided
- Easy to understand variable names
- Frequency counts provided for graphs
- Only requested what was required
- Results included separate calculations to prove that ‘dominance rule’ had been met
- Clear explanations of the results
- Asked for advice before making request
- Analysis plan accompanied the results, so it was easy for me to understand the results
- Only requested what was required
- Results included separate calculations to prove that ‘dominance rule’ had been met
- Clear explanations of the results
- Data citation provided
- Easy to understand variable names
- Frequency counts provided for graphs
- Clear explanation of what the results meant
- Provided draft journal article so easy to understand context of results
- Clear explanations of the results
- Data citation provided
- Easy to understand variable names
- Frequency counts provided for graphs
- Only requested what was required
- Results included separate calculations to prove that ‘dominance rule’ had been met
- Clear explanations of the results
- Asked for advice before making request
- Analysis plan accompanied the results, so it was easy for me to understand the results
- Only requested what was required
- Results included separate calculations to prove that ‘dominance rule’ had been met
- Clear explanations of the results
- Data citation provided
- Easy to understand variable names
- Frequency counts provided for graphs
- Clear explanation of what the results meant
One researcher requested many outputs to be returned to them the same day.

Variable names in file meant nothing to me, but probably meant something to the researcher!

PhD student was unsure of methods and data, but supervisor wouldn't request access, so PhD student kept requesting small outputs.

One output consisted of results with accompanying explanation, but it was written in a different language.

One researcher requested 800 files for release on the same day!

Output request consisted of charts and scatterplots which had no labels, or any other information.

One researcher had finished his PhD but kept asking for outputs because he had to do revisions.

One researcher requested a huge volume of results for release, and was very pushy about the request.

Researcher requested a huge series of tables, many of which could be subtracted from each other to reveal small frequencies.

Output requested was a huge log of the day's analysis and exploration, with no explanation about what was requested.

Researcher requested many outputs to be returned to them the same day.

Output requested with no explanation.

Researcher asked for a dataset to be released (it was disguised as a 100 column table).

One researcher wanted to release a dataset to share with others.

Researcher requested a graph which wasn't labelled and not explained, I didn't know what I was looking at.

One researcher requested a graph in an Excel sheet: underlying data were included!

Researcher had poor knowledge of statistics software.

Underlying frequencies not provided.

Poor table arrangement/formatting meant that it was really hard to check the results.

Graph requested in an Excel sheet: underlying data were included!

One researcher requested 800 files for release on the same day!

Researchers had poor knowledge of statistics software.

Output requested was a huge log of the day's analysis and exploration, with no explanation about what was requested.

One researcher had finished his PhD but kept asking for outputs because he had to do revisions.

One output included the postcodes for each individual in the data.

One researcher had poor knowledge of statistics software.

Underlying frequencies not provided.

One researcher requested a dataset to be released (it was disguised as a 100 column table).

Researchers had poor knowledge of statistics software.

Underlying frequencies not provided.

One researcher requested many outputs to be returned to them the same day.

Variable names in file meant nothing to me, but probably meant something to the researcher!

PhD student was unsure of methods and data, but supervisor wouldn't request access, so PhD student kept requesting small outputs.

One output consisted of results with accompanying explanation, but it was written in a different language.

One researcher requested 800 files for release on the same day!

Output request consisted of charts and scatterplots which had no labels, or any other information.

One researcher had finished his PhD but kept asking for outputs because he had to do revisions.

One researcher requested a huge volume of results for release, and was very pushy about the request.

Researcher requested a huge series of tables, many of which could be subtracted from each other to reveal small frequencies.

Output requested was a huge log of the day's analysis and exploration, with no explanation about what was requested.

Researcher asked for a dataset to be released (it was disguised as a 100 column table).

One researcher wanted to release a dataset to share with others.

Researcher requested a graph which wasn't labelled and not explained, I didn't know what I was looking at.

One researcher requested a graph in an Excel sheet: underlying data were included!

Researcher had poor knowledge of statistics software.

Underlying frequencies not provided.

Poor table arrangement/formatting meant that it was really hard to check the results.

Graph requested in an Excel sheet: underlying data were included!

One researcher requested many outputs to be returned to them the same day.

Variable names in file meant nothing to me, but probably meant something to the researcher!
Managing expectations
IN THIS CHAPTER, YOU WILL LEARN:

1. How to build a good relationship with analysts who produce statistics
2. Why it is important to collaborate with analysts
3. How new analysts can be supported

Service Level Agreement (SLA)
A Service Level Agreement (SLA) setting out the SDC checking service offered by the organisation and the standards it maintains in the provision of that service, will help to manage analysts’ expectations.

Managing analysts’ expectations in turn helps to manage checkers’ workloads and the pressure on them, both of which reduce the risk of unsafe statistics being released. For example, if an organisation has no standard in terms of the time it takes to check a statistical result and an analyst submits a statistical result late in the day, requesting that it is released by the end of the day, this is likely to cause pressure on the checker.

Checking statistical results under pressure with little time is risky and mistakes may be made, increasing the risk of disclosure of confidential information. Having a standard in place that sets out the time required to check statistical results and which is manageable for the checkers, as well as meeting the needs of analysts, ensures that staff are not checking statistical results under undue pressure.

Being clear about what statistical results checking involves and analysts’ responsibilities

SDC checking services will vary across organisations, as will analysts’ responsibilities within the process. However, it is important that organisations clearly communicate what their SDC checking service includes, as well being clear about the
exclusions (e.g. an organisation may provide advice and expert guidance on how to produce good and safe statistical results, but will not alter or change statistical results in any way to make them safe). Similarly, being clear about analysts’ responsibilities (e.g. producing good and safe statistical results, being available to answer questions etc.) ensures that analysts are aware of what is required of them. Both of these helps to manage analysts’ expectations and ensure that SDC checking is carried out in a non-pressurised environment.

Managing Relations
Managing relations effectively with analysts is a key element of managing disclosure risk.

The establishment of this relationship begins at the training that analysts attend before accessing the Safe Setting. We recommend that the training provide analysts with an understanding of SDC and the skills required to produce good quality safe statistical results. It is also important to provide analysts with a clear view of their responsibilities and involvement in the SDC process, and of the joint working relationship between analysts and checkers.

Following the training, SDC should be a collaborative process, based on mutual understanding and respect. Checkers should be willing to assess any statistic they are presented with and where they have limited knowledge of the statistic, work with the analyst to understand it. Checkers should also provide help and guidance to analysts in making ‘unsafe’ statistical results safe. Likewise, analysts should take responsibility for their statistical results, taking care to produce good quality safe statistical results, and be available to discuss them with the checkers and make changes where required. Both parties should work together to identify ways in which statistical results can be released, this work should not fall solely on the checker/s.

As Desai and Ritchie (2009, p.8) demonstrate in their paper on ‘effective research management’, training and involving analysts in SDC promotes a culture of understanding data security, in which analysts feel accountable for the safety and security of data. This reduces the risk of disclosure for data subjects (see the paper for a full discussion of the benefits of this system).

Supporting ‘new’ Analysts
Analysts that are new to working in a Safe Setting may require additional SDC support during the early stages.

If a new analyst submits an unsafe or bad set of statistical results, we would recommend that the checker remind the analyst of the organisation’s approach to SDC and its type requirements.

New analysts may also require extra support to help them make ‘unsafe’ statistical results safe and this should be provided. Ideally these conversations should be carried out over the telephone as it gives the analyst an opportunity to ask questions and for the checker to ensure that their points have
been understood. An email afterwards confirming the conversation and what has been agreed is recommended.

Additional resources may be required to support new analysts however this is an efficient use of resources in the long-term. Providing additional support in the early stages will ensure that analysts understand their responsibilities and have the skills to produce good quality safe statistical results – saving time and effort for checkers in the long-run.
Further resources

Not many resources exist which provide guidance about how to set up an SDC process, or about managing users of the service with respect to SDC. That’s because not many Safe Settings exist, and they are a relatively recent invention.

However, this section contains some references which staff working at Safe Settings may find useful.

Effective Researcher Management

Professor Felix Ritchie (University of the West of England) and Tanvi Desai (former Assistant Director of the Administrative Data Service and Data Manager at the London School of Economics) published an article about how to effectively manage users. While this article does not focus specifically on SDC, it does encourage Safe Setting staff to think about how to manage users in a positive and proactive manner, and how to go about creating incentives.

https://pdfs.semanticscholar.org/5ad1/c7b30b8310f448cabe61386c77889048a44b.pdf

Operationalising Principles Based Output SDC

Professor Felix Ritchie (University of the West of England) and Richard Welpton (The Health Foundation, formerly at UK Data Service, University of Essex) drafted a paper aiming to set out the practicalities of managing SDC in a Safe Setting.

http://www.felixritchie.co.uk/publications/Operationalising%20PBOSDC%20new%20v10a.docx
Copyright

If you would like to use our work please do so but please also acknowledge us! Safe Data Access Professionals.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.